The Benefits of Closed-Loop Transcranial Alternating Current Stimulation on Subjective Sleep Quality
Poor sleep quality is a common complaint, affecting over one third of people in the United States. While sleep quality is thought to be related to slow-wave sleep (SWS), there has been little investigation to address whether modulating slow-wave oscillations (SWOs) that characterize SWS could impact...
Gespeichert in:
Veröffentlicht in: | Brain sciences 2018-11, Vol.8 (12), p.204 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poor sleep quality is a common complaint, affecting over one third of people in the United States. While sleep quality is thought to be related to slow-wave sleep (SWS), there has been little investigation to address whether modulating slow-wave oscillations (SWOs) that characterize SWS could impact sleep quality. Here we examined whether closed-loop transcranial alternating current stimulation (CL-tACS) applied during sleep impacts sleep quality and efficiency.
CL-tACS was used in 21 participants delivered at the same frequency and in phase with endogenous SWOs during sleep. Sleep quality was assessed in the morning following either verum or sham control stimulation during sleep, with order counterbalanced within participants.
Higher sleep quality and efficiency were found after verum stimulation nights compared to control. The largest effects on sleep quality were found immediately following an adaptation night in the laboratory for which sleep quality was reduced.
Applying CL-tACS at the same frequency and phase as endogenous SWOs may offer a novel method to improve subjective sleep quality after a night with poor quality sleep. CL-tACS might be helpful for increasing sleep quality and efficiency in otherwise healthy people, and in patients with clinical disorders that involve sleep deficits. |
---|---|
ISSN: | 2076-3425 2076-3425 |
DOI: | 10.3390/brainsci8120204 |