Detection of Debonding Defects in Concrete-Filled Steel Tubes Using Fluctuation Analysis Method

This study presents a comprehensive method for detecting debonding defects in concrete-filled steel tube (CFST) structures using wave propagation analysis with externally attached piezoelectric ceramic sensors. Experimental tests and numerical simulations were conducted to evaluate the sensitivity a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (24), p.8222
Hauptverfasser: Wang, Chenfei, Yang, Yixin, Fan, Guangming, Lian, Junyin, Chen, Fangjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a comprehensive method for detecting debonding defects in concrete-filled steel tube (CFST) structures using wave propagation analysis with externally attached piezoelectric ceramic sensors. Experimental tests and numerical simulations were conducted to evaluate the sensitivity and accuracy of two measurement techniques—the flat and oblique measurement methods—in detecting debonding defects of varying lengths and heights. The results demonstrate that the flat measurement method excels in detecting debonding height, while the oblique method is more effective for detecting debonding length. A normalized judgment index (DI) was introduced to quantify the correlation between debonding characteristics and the detected signal amplitude, revealing the significant influence of sensor spacing on detection accuracy. Furthermore, a mathematical model based on wavelet packet energy analysis was developed to establish a linear relationship between wavelet packet energy and debonding size. This model offers a scientific foundation for the quantitative detection of debonding defects and provides a new approach to the health monitoring of CFST structures. The integrated use of both measurement techniques enhances detection precision, enabling both qualitative and quantitative defect analysis, which can significantly guide the maintenance and repair of CFST structures.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24248222