Theoretical Study on Synchronization of the Counter-Rotating Exciter in the Compound Vibrating Field
Aiming at the impact of the complex vibration environment generated by the integrated vibration equipment on the vibration testing equipment, this paper proposes a new method to solve the vibratory synchronization problem in the compound vibration environment. A new concept of the compound vibrating...
Gespeichert in:
Veröffentlicht in: | Shock and vibration 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at the impact of the complex vibration environment generated by the integrated vibration equipment on the vibration testing equipment, this paper proposes a new method to solve the vibratory synchronization problem in the compound vibration environment. A new concept of the compound vibrating field is proposed, and a new simple vibrating system with a single counter-rotating exciter in a compound vibrating field is established. The motion differential equation of the system is established by the integral mean method with small parameters, and then the periodic coefficient differential equation is obtained through linearization. Based on the relevant theory of the second-order differential equation with periodic coefficient, the synchronization criterion and stability criterion of the vibrating system are derived. According to the theoretical criteria, the coupling characteristics of the exciter and the vibrating field are numerically simulated and analyzed, which supports the theoretical results. The proposed compound vibrating field provides a new way for studying vibratory synchronization. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2021/9933328 |