A Facile Chemical Synthesis of PbTe Nanostructures at Room Temperature
Thermoelectric (TE) materials are possible solutions of the current problems in the energy sector to overcome environmental pollution, increasing energy demand and the decline of natural resources. Thermoelectric materials are a promising alternative for the conversion of waste heat to electricity....
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-09, Vol.10 (10), p.1915 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermoelectric (TE) materials are possible solutions of the current problems in the energy sector to overcome environmental pollution, increasing energy demand and the decline of natural resources. Thermoelectric materials are a promising alternative for the conversion of waste heat to electricity. Nanocrystalline PbTe powder was synthesized by a simple chemical method at room temperature and systematically investigated at various durations as samples A1–A5. Fourier Transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) confirmed the composition of the samples. TE parameters as thermo-emf of samples A1–A5 and electrical conductivity were measured. The cyclic voltammetry gives a band gap of 0.25 eV, which is in agreement with the optical band gap of the material. The A4 sample has an average crystal size of 36 nm with preferred orientation in (200) verifying the cubic morphology. The obtained TE parameters are beneficial for the non-uniform TE materials which might be due to strong current boundary scattering and extremely low thermal conductivity of the samples. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano10101915 |