Ultimate Dynamics of the Two-Phenotype Cancer Model: Attracting Sets and Global Cancer Eradication Conditions

In this paper we consider the ultimate dynamics of one 4D cancer model which was created for studying the immune response to the two-phenotype tumors. Our approach is based on the localization method of compact invariant sets. The existence of a positively invariant polytope is shown and its size is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-10, Vol.11 (20), p.4275
Hauptverfasser: Kanatnikov, Anatolij N., Starkov, Konstantin E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider the ultimate dynamics of one 4D cancer model which was created for studying the immune response to the two-phenotype tumors. Our approach is based on the localization method of compact invariant sets. The existence of a positively invariant polytope is shown and its size is calculated depending on the parameters of this cancer model. Various convergence conditions to the tumor free equilibrium point were proposed. This property has the biological meaning of global asymptotic tumor eradication (GATE). Further, the case in which local asymptotic tumor eradication (LATE) conditions entail GATE conditions was found. Our theoretical studies of ultimate dynamics are complemented by numerical simulation results.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11204275