New implementation of OGC Web Processing Service in Python programming language. PyWPS-4 and issues we are facing with processing of large raster data using OGC WPS
The OGC® Web Processing Service (WPS) Interface Standard provides rules for standardizing inputs and outputs (requests and responses) for geospatial processing services, such as polygon overlay. The standard also defines how a client can request the execution of a process, and how the output from th...
Gespeichert in:
Veröffentlicht in: | International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2016-06, Vol.XLI-B7, p.927-930 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The OGC® Web Processing Service (WPS) Interface Standard provides rules for standardizing inputs and outputs (requests and responses) for geospatial processing services, such as polygon overlay. The standard also defines how a client can request the execution of a process, and how the output from the process is handled. It defines an interface that facilitates publishing of geospatial processes and client discovery of processes and and binding to those processes into workflows. Data required by a WPS can be delivered across a network or they can be available at a server. PyWPS was one of the first implementations of OGC WPS on the server side. It is written in the Python programming language and it tries to connect to all existing tools for geospatial data analysis, available on the Python platform. During the last two years, the PyWPS development team has written a new version (called PyWPS-4) completely from scratch. The analysis of large raster datasets poses several technical issues in implementing the WPS standard. The data format has to be defined and validated on the server side and binary data have to be encoded using some numeric representation. Pulling raster data from remote servers introduces security risks, in addition, running several processes in parallel has to be possible, so that system resources are used efficiently while preserving security. Here we discuss these topics and illustrate some of the solutions adopted within the PyWPS implementation. |
---|---|
ISSN: | 2194-9034 1682-1750 2194-9034 |
DOI: | 10.5194/isprs-archives-XLI-B7-927-2016 |