Light-Emitting Diode Based Photoacoustic Imaging System

Purpose: A Photoacoustic Imaging (PAI) as a non-invasive hybrid imaging modality has the potential to be used in a wide range of pre-clinical and clinical applications. There are different optical excitation sources that affect the performance of PAI systems. Our goal is proving the capability of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in biomedical technologies 2020-11, Vol.7 (3)
Hauptverfasser: Najafzadeh, Ebrahim, Farnia, Parastoo, Ahmadian, Alireza, Ghadiri, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: A Photoacoustic Imaging (PAI) as a non-invasive hybrid imaging modality has the potential to be used in a wide range of pre-clinical and clinical applications. There are different optical excitation sources that affect the performance of PAI systems. Our goal is proving the capability of the Light-Emitting Diode (LED) based PAI system for imaging of objects in different depths. Materials and Methods: In this study the Full Width of Half Maximum (FWHM) and Contrast to Noise Ratio (CNR) of LED-based PAI system is evaluated using agar, and Poly-Vinyl Alcohol Cryogel (PVA-C) phantoms. Results: The results show that axial and lateral FWHM of the photoacoustic image in agar phantom 1%, are 0.59 and 1.16 mm, respectively. It is capable of distinguishing objects about 250 µm. Furthermore, one of the main improvements of photoacoustic images is achieved by proposed LED-based system that is a 26% higher CNR versus the ultrasound images. Conclusion: Therefore, the provided technical characteristics in this study have made designed LED-based PAI system as a suitable tool for preclinical and clinical imaging.
ISSN:2345-5837
2345-5837
DOI:10.18502/fbt.v7i3.4623