Fuzzy Integral Sliding Mode Control Based on Microbial Fuel Cell

Microbial fuel cell (MFC) is a renewable clean energy. Microorganisms are used as catalysts to convert the chemical energy of organic matter in the sewage into electrical energy to realize sewage treatment and recover energy at the same time. It has good development prospects. However, the output po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Hauptverfasser: Lian, Lei, Ji, Peng, OuYang, Tianyu, Ma, Fengying, Xu, Shanwen, Gao, Chao, Liu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbial fuel cell (MFC) is a renewable clean energy. Microorganisms are used as catalysts to convert the chemical energy of organic matter in the sewage into electrical energy to realize sewage treatment and recover energy at the same time. It has good development prospects. However, the output power of MFC is affected by many factors, and it is difficult to achieve a stable voltage output. For the control-oriented single-chamber MFC, a fuzzy integral sliding mode control is designed. The continuous adjustment of the sliding surface ensures that the system only moves on the sliding surface, which eliminates the arrival stage and improves robustness. For chattering existing in the system, the control scheme is further optimized to obtain fuzzy integral sliding mode control, and the fuzzy module adaptively adjusts the control parameters according to the system state, which effectively reduces the system chattering. Experiments prove that the control scheme reduces chattering while ensuring the stable output of the system.
ISSN:1076-2787
1099-0526
DOI:10.1155/2021/6670039