Enhanced Anticancer Activity of 5'-DFUR-PCL-MPEG Polymeric Prodrug Micelles Encapsulating Chemotherapeutic Drugs

The compound 5'-deoxy-5-fluorouridine (5'-DFUR) is a prodrug of the anti-tumor drug 5-fluorouracil (5-FU). Thymidine phosphorylase (TP) is an enzyme that can convert 5'-DFUR to its active form 5-FU and the expression of TP is upregulated in various cancer cells. In this study, 5'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2018-12, Vol.8 (12), p.1041
Hauptverfasser: Sawdon, Alicia J, Zhang, Jun, Wang, Xutu, Peng, Ching-An
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The compound 5'-deoxy-5-fluorouridine (5'-DFUR) is a prodrug of the anti-tumor drug 5-fluorouracil (5-FU). Thymidine phosphorylase (TP) is an enzyme that can convert 5'-DFUR to its active form 5-FU and the expression of TP is upregulated in various cancer cells. In this study, 5'-DFUR associated with amphiphilic copolymer poly(ε-caprolactone)-methoxy poly(ethylene glycol) (5'-DFUR-PCL-MPEG) was synthesized, characterized, and self-assembled into functional polymeric micelles. To demonstrate that the prodrug 5'-DFUR could convert into cytotoxic 5-fluorouracil (5-FU) by endogenous TP, HT-29 colorectal cancer cells were treated with 5'-DFUR-PCL-MPEG polymeric micelles for various time periods. Chemotherapeutic drugs doxorubicin (DOX) and 7-ethyl-10-hydroxycamptothecin (SN-38) were also encapsulated separately into 5'-DFUR-PCL-MPEG polymeric micelles to create a dual drug-loaded system. HT-29 cells were treated with DOX or SN-38 encapsulated 5'-DFUR-PCL-MPEG polymeric micelles to examine the efficacy of dual drug-loaded micelles. As a result, HT-29 cells treated with 5'-DFUR-PCL-MPEG polymeric micelles showed up to 40% cell death rate after a 72-h treatment. In contrast, HT-29 cells challenged with DOX or SN-38 encapsulated 5'-DFUR-incorporated polymeric micelles showed 36% and 31% in cell viability after a 72-h treatment, respectively.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano8121041