Crystallization and Hardness Change of the Ti-Based Bulk Metallic Glass Manufactured by a Laser Powder Bed Fusion Process

Ti-2.5Zr-5.0Hf-37.5Cu-7.5Ni-1.0Si-5.0Sn (at.%) BMG has been successfully manufactured in amorphous powder with a size of about 25 μm (D50). Using this amorphous powder, a Ti-based BMG was manufactured by an additive manufacturing process based on a laser powder bed fusion (LPBF) technique. In 3D pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-07, Vol.11 (7), p.1049
Hauptverfasser: Jang, Ji-Hoon, Kim, Hyung-Guin, Kim, Hwi-Jun, Lee, Dong-Geun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ti-2.5Zr-5.0Hf-37.5Cu-7.5Ni-1.0Si-5.0Sn (at.%) BMG has been successfully manufactured in amorphous powder with a size of about 25 μm (D50). Using this amorphous powder, a Ti-based BMG was manufactured by an additive manufacturing process based on a laser powder bed fusion (LPBF) technique. In 3D printing processes using amorphous powders, it is necessary and important to understand the crystallization behavior due to the difference in energy density applied to the powders. An LPBF process has been carried out with various energy density conditions to minimize the inner defects and identify the sound mechanical properties of 3D-printed BMG parts. At the lowest energy density condition (3.0 J/mm3), the most pores were generated. Even if the same energy density (3.0 J/mm3) was applied, the rapid laser movement caused many pores to form inside the material. The relatively sound 3D-printed Ti-based BMG was successfully fabricated with a size of about 5 mm × 5 mm × 3 mm. Peaks at 41° and 44° showing crystallization were observed in all conditions. The higher the laser power was, the greater each peak intensity and the more crystallization (CuTi, Ti3Cu4, etc.) was present in the BMG, and the higher the scan speed, the more the internal defects were found.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11071049