Evolution of sexual mimicry in the orchid subtribe orchidinae: the role of preadaptations in the attraction of male bees as pollinators

Within the astonishing diversity of orchid pollination systems, sexual deception is one of the most stunning. An example is the genus Ophrys, where plants attract male bees as pollinators by mimicking female mating signals. Unsaturated hydrocarbons (alkenes) are often the key signal for this chemica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC evolutionary biology 2008-01, Vol.8 (1), p.27-27
Hauptverfasser: Schiestl, Florian P, Cozzolino, Salvatore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within the astonishing diversity of orchid pollination systems, sexual deception is one of the most stunning. An example is the genus Ophrys, where plants attract male bees as pollinators by mimicking female mating signals. Unsaturated hydrocarbons (alkenes) are often the key signal for this chemical mimicry. Here we investigate the evolution of these key compounds within Orchidinae by mapping their production in flowers of selected species onto their estimated phylogeny. We found that alkenes, at least in trace amounts, were present in 18 of 20 investigated species together representing 10 genera. Thus, the reconstruction of ancestral state for alkene-production showed that this is a primitive character state in Ophrys, and can be interpreted as a preadaptation for the evolution of sexual deception. Four of the investigated species, namely Ophrys sphegodes, Serapias lingua, S. cordigera, and Anacamptis papilionacea, that are pollinated primarily by male bees, produced significantly larger amounts and a greater number of different alkenes than the species pollinated either primarily by female bees or other insects. We suggest that high amounts of alkenes evolved for the attraction of primarily male bees as pollinators by sensory exploitation, and discuss possible driving forces for the evolution of pollination by male bees.
ISSN:1471-2148
1471-2148
DOI:10.1186/1471-2148-8-27