Observation of optical gyromagnetic properties in a magneto-plasmonic metamaterial

Metamaterials with artificial optical properties have attracted significant research interest. In particular, artificial magnetic resonances with non-unity permeability tensor at optical frequencies in metamaterials have been reported. However, only non-unity diagonal elements of the permeability te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-03, Vol.13 (1), p.1719-1719, Article 1719
Hauptverfasser: Yang, Weihao, Liu, Qing, Wang, Hanbin, Chen, Yiqin, Yang, Run, Xia, Shuang, Luo, Yi, Deng, Longjiang, Qin, Jun, Duan, Huigao, Bi, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metamaterials with artificial optical properties have attracted significant research interest. In particular, artificial magnetic resonances with non-unity permeability tensor at optical frequencies in metamaterials have been reported. However, only non-unity diagonal elements of the permeability tensor have been demonstrated to date. A gyromagnetic permeability tensor with non-zero off-diagonal elements has not been observed at the optical frequencies. Here we report the observation of gyromagnetic properties in the near-infrared wavelength range in a magneto-plasmonic metamaterial. The non-zero off-diagonal permeability tensor element causes the transverse magneto-optical Kerr effect under s-polarized incidence that otherwise vanishes if the permeability tensor is not gyromagnetic. By retrieving the permeability tensor elements from reflection, transmission, and transverse magneto-optical Kerr effect spectra, we show that the effective off-diagonal permeability tensor elements reach 10 −3 level at the resonance wavelength (~900 nm) of the split-ring resonators, which is at least two orders of magnitude higher than magneto-optical materials at the same wavelength. The artificial gyromagnetic permeability is attributed to the change in the local electric field direction modulated by the split-ring resonators. Our study demonstrates the possibility of engineering the permeability and permittivity tensors in metamaterials at arbitrary frequencies, thereby promising a variety of applications of next-generation nonreciprocal photonic devices, magneto-plasmonic sensors, and active metamaterials. Optical gyromagnetic properties are not observed in natural or metamaterials to date. Here, the authors experimentally demonstrated optical gyromagnetic properties in a magneto-plasmonic metamaterial, realizing the long-sought bi-gyrotropic medium.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29452-9