Shear Strengthening of Reinforced Concrete Beams Using Engineered Cementitious Composites and Carbon Fiber-Reinforced Polymer Sheets

This study evaluates the performance of Reinforced Concrete (RC) beams enhanced in shear using Engineered Cementitious Composites (ECCs) and Carbon Fiber-Reinforced Polymers (CFRPs). The experimental study encompasses fifteen RC beams. This set includes one control specimen and fourteen beams fortif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fibers 2023-11, Vol.11 (11), p.98
Hauptverfasser: Emara, Mohamed, Salem, Mohamed A., Mohamed, Heba A., Shehab, Hamdy A., El-Zohairy, Ayman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study evaluates the performance of Reinforced Concrete (RC) beams enhanced in shear using Engineered Cementitious Composites (ECCs) and Carbon Fiber-Reinforced Polymers (CFRPs). The experimental study encompasses fifteen RC beams. This set includes one control specimen and fourteen beams fortified in shear with Externally Bonded (EB) composites. Two of these specimens were enhanced with ECC layers, while the remaining were augmented with combined CFRP-ECC layers. Variables in the test included the ECC layer thickness, matrix type, number of CFRP layers, and strengthening configurations such as full wrapping, vertical strips, and inclined strips. The results indicated that the shear capacity of the fortified beams increased by 61.1% to 160.1% compared to the control specimen. The most effective structural performance was observed in the full wrapping method, which utilized a single CFRP layer combined with either 20 mm or 40 mm ECC thickness, outperforming other techniques. However, the inclined strip method demonstrated a notably higher load-bearing capacity than the full wrapping approach for beams with double CFRP layers paired with 20 mm and 40 mm ECC thicknesses. This configuration also exhibited superior ductility compared to the rest. Furthermore, the experimental shear capacities obtained were juxtaposed with theoretical values from prevailing design standards.
ISSN:2079-6439
2079-6439
DOI:10.3390/fib11110098