Ding–Iohara–Miki symmetry of network matrix models

Ward identities in the most general “network matrix model” from [1] can be described in terms of the Ding–Iohara–Miki algebras (DIM). This confirms an expectation that such algebras and their various limits/reductions are the relevant substitutes/deformations of the Virasoro/W-algebra for (q,t) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2016-11, Vol.762, p.196-208
Hauptverfasser: Mironov, A., Morozov, A., Zenkevich, Y.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ward identities in the most general “network matrix model” from [1] can be described in terms of the Ding–Iohara–Miki algebras (DIM). This confirms an expectation that such algebras and their various limits/reductions are the relevant substitutes/deformations of the Virasoro/W-algebra for (q,t) and (q1,q2,q3) deformed network matrix models. Exhaustive for these purposes should be the Pagoda triple-affine elliptic DIM, which corresponds to networks associated with 6d gauge theories with adjoint matter (double elliptic systems). We provide some details on elliptic qq-characters.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2016.09.033