Face De-Identification Using Convolutional Neural Network (CNN) Models for Visual-Copy Detection

The proliferation of media-sharing platforms has led to issues with illegally edited content and the distribution of pornography. To protect personal information, de-identification technologies are being developed to prevent facial identification. Existing de-identification methods directly alter th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-03, Vol.14 (5), p.1771
Hauptverfasser: Song, Jinha, Kim, Juntae, Nang, Jongho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proliferation of media-sharing platforms has led to issues with illegally edited content and the distribution of pornography. To protect personal information, de-identification technologies are being developed to prevent facial identification. Existing de-identification methods directly alter the pixel values in the face region, leading to reduced feature representation and identification accuracy. This study aims to develop a method that minimizes the possibility of personal identification while effectively preserving important features for image- and video-copy-detection tasks, proposing a new deep-learning-based de-identification approach that surpasses traditional pixel-based alteration methods. We introduce two de-identification models using different approaches: one emphasizing the contours of the original face through feature inversion and the other generating a blurred version of the face using D2GAN (Dual Discriminator Generative Adversarial Network). Both models were evaluated on their performance in image- and video-copy-detection tasks before and after de-identification, demonstrating effective feature preservation. This research presents new possibilities for personal-information protection and digital-content security, contributing to digital-rights management and law enforcement.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14051771