Hydrogen and Usability of Hydrogen Storage Technologies
Science, technology and politics agree: hydrogen will be the energy carrier of the future. It will replace fossil fuels based on a sufficient supply from sustainable energy. Since the possibilities of storing and transporting hydrogen play a decisive role here, the so-called LOHC (Liquid Organic Hyd...
Gespeichert in:
Veröffentlicht in: | TH Wildau engineering and natural sciences proceedings 2021-06, Vol.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Science, technology and politics agree: hydrogen will be the energy carrier of the future. It will replace fossil fuels based on a sufficient supply from sustainable energy. Since the possibilities of storing and transporting hydrogen play a decisive role here, the so-called LOHC (Liquid Organic Hydrogen Carriers) can be used as carrier materials. LOHC carrier materials can reversibly absorb hydrogen, store it without loss and release it again when needed. Since little or no pressure is required, normal containers or tanks can be used. The volume or mass-related energy densities can reach around a quarter of liquid fossil fuels. This paper is to give an introduction to the field of hydrogen storage and usage of those LOHC, in particular. The developments of the last ten years have been related to the storage and transport of hydrogen with LOHC. These are crucial to meet the future demand for energy carriers e.g. for mobile applications. For this purpose, all transport systems are under consideration as well as the decentralized supply of rural areas with low technological penetration, e.g. regions of Western Africa which are often characterized by a lack of energy supply. Hydrogen bound in LOHC can provide a hazard-free alternative for distribution. The paper provides an overview of the conversion forms as well as the chemical carrier materials. Dibenzyltoluene as well as N-ethylcarbazole - as examples for LOHC - are discussed as well as chemical hydrogen storage materials like ammonia boranes as alternatives to LOHC. |
---|---|
ISSN: | 2748-8829 |
DOI: | 10.52825/thwildauensp.v1i.10 |