Synthesis, antibacterial, anti-oxidant and molecular docking studies of imidazoquinolines

Quinoline and imidazole derivatives have been playing a significant role in functional bioactivities and were potentially used as antibacterial, antifungal, anticancer, and anti-inflammatory drugs. Owing to the limitation of drug resistance, herein we synthesized thio-, chloro-, and hydroxyl-functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2021-07, Vol.7 (7), p.e07484-e07484, Article e07484
Hauptverfasser: Velmurugan, K., Don, Derin, Kannan, Rajesh, Selvaraj, C., VishnuPriya, S., Selvaraj, G., Singh, S.K., Nandhakumar, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quinoline and imidazole derivatives have been playing a significant role in functional bioactivities and were potentially used as antibacterial, antifungal, anticancer, and anti-inflammatory drugs. Owing to the limitation of drug resistance, herein we synthesized thio-, chloro-, and hydroxyl-functionalized various imidazoquinolines by molecular hybridization approach. All the imidazoquinoline derivatives were examined for their antibacterial activity against selected bacterial pathogens by the agar well diffusion method. In addition, the anti-oxidant efficacy of imidazoquinolines was also tested using ferric reducing antioxidant power (FRAP). Among them, electron-withdrawing (-Cl) substituent containing imidazoquinoline 5f showed higher antibacterial and anti-oxidant activities than other imidazoquinolines and reached the effectiveness of the standard. In addition, compounds 4f, 5e, and 3f showed moderate antibacterial activity and other derivatives displayed weak activity against various pathogens. Molecular docking studies were also performed on selected imidazoquinoline derivatives (3f, 4f, and 5f), which showed high docking score and strong binding energy values. These results revealed that thio-imidazoquinoline could assist as a prototype for the designing of multidrug-resistant antibiotics against various microbial organisms. Thio-imidazoquinolines; Hydroxy-imidazoquinolines; Chloro-imidazoquinolines; 2-Chloro-3-formylquinolines; Antibacterial; Antioxidant; Molecular docking; Multidrug-resistant.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2021.e07484