Hyperspectral Endmember Extraction Using Spatially Weighted Simplex Strategy

Spatial information is increasingly becoming a vital factor in the field of hyperspectral endmember extraction, since it takes into consideration the spatial correlation of pixels, which generally involves jointing spectral information for preprocessing and/or endmember extraction in hyperspectral i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2019-09, Vol.11 (18), p.2147
Hauptverfasser: Shen, Xiangfei, Bao, Wenxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatial information is increasingly becoming a vital factor in the field of hyperspectral endmember extraction, since it takes into consideration the spatial correlation of pixels, which generally involves jointing spectral information for preprocessing and/or endmember extraction in hyperspectral imagery (HSI). Generally, simplex-based endmember extraction algorithms (EEAs) identify endmembers without considering spatial attributes, and the spatial preprocessing strategy is an independently executed module that can provide spatial information for the endmember search process. Despite this interest, to the best of our knowledge, no one has studied the integration framework of the spatial information-embedded simplex for hyperspectral endmember extraction. In this paper, we propose a spatially weighted simplex strategy, called SWSS, for hyperspectral endmember extraction that investigates a novel integration framework of the spatial information-embedded simplex for identifying endmember. Specifically, the SWSS generates the spatial weight scalar of each pixel by determining its corresponding spatial neighborhood correlations for weighting itself within the simplex framework to regularize the selection of the endmembers. The SWSS could be implemented in the traditional simplex-based EEAs, such as vertex component analysis (VCA), to introduce spatial information into the data simplex framework without the computational complexity excessively increasing or endmember extraction accuracy loss. Based on spectral angle distance (SAD) and root-mean-square-error (RMSE) evaluation criteria, experimental results on both synthetic and C u p r i t e real hyperspectral datasets indicate that the simplex-based EEA re-implemented by the SWSS has a significant improvement on endmember extraction performance over the techniques on their own and without re-implementing.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs11182147