Algebraic relations among Goss’s zeta values on elliptic curves
In 2007 Chang and Yu determined all the algebraic relations among Goss’s zeta values for $A=\mathbb F_q[\theta ]$ , also known as the Carlitz zeta values. Goss raised the problem of determining all algebraic relations among Goss’s zeta values at positive integers for a general base ring A, but very...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2023-01, Vol.11, p.1-40, Article e90 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2007 Chang and Yu determined all the algebraic relations among Goss’s zeta values for
$A=\mathbb F_q[\theta ]$
, also known as the Carlitz zeta values. Goss raised the problem of determining all algebraic relations among Goss’s zeta values at positive integers for a general base ring A, but very little is known. In this paper, we develop a general method, and we determine all algebraic relations among Goss’s zeta values for the base ring A which is the coordinate ring of an elliptic curve defined over
$\mathbb F_q$
. To our knowledge, this is the first work tackling Goss’s problem when the base ring has class number strictly greater than 1. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2023.94 |