Fault Detection and Diagnosis of Air Handling Unit: A Review

Air-conditioning systems consumed the most energy usage nearly 45% of the total energy used in commercial-building. Where AHU is one of the most extensively operated equipment and this device is typical customize and complex which can results in hardwire failure and controller errors. The efficiency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Leong, Cheng Yew
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Air-conditioning systems consumed the most energy usage nearly 45% of the total energy used in commercial-building. Where AHU is one of the most extensively operated equipment and this device is typical customize and complex which can results in hardwire failure and controller errors. The efficiency of the system is very much depending on the proper functioning of sensors. Faults arising from the sensors and control systems are a major contribution to the energy wastage. As such faults often go unnoticed for extended periods of time until the deterioration in performance becomes great enough to trigger comfort complaints or total equipment failure. Energy could be reduced if those faults can be detected and identified at early stage. This paper aims to review of various existing automated fault detection and diagnosis (AFDD) methods for an Air Handling Unit. The background of AHU system, general fault detection and diagnosis framework and typical faults in AHU is described. Comparison and evaluation of the various methodologies will be reviewed in this paper. This comparative study also reveals the strengths and weaknesses of the different approaches. The important role of fault diagnosis in the broader context of air- conditioning is also outlined. By identifying and diagnosing faults to be repaired, these techniques can benefits building owners by reducing energy consumption, improving indoor air quality and operations and maintenance.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201925506001