Positive Solutions for a Class of Coupled System of Singular Three-Point Boundary Value Problems
Existence of positive solutions for a coupled system of nonlinear three-point boundary value problems of the type -x[variant prime][variant prime] (t)=f(t,x(t),y(t)) , t∈(0,1) , -y[variant prime][variant prime] (t)=g(t,x(t),y(t)) , t∈(0,1) , x(0)=y(0)=0 , x(1)=αx(η) , y(1)=αy(η) , is established. Th...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2009-01, Vol.2009 (1), p.273063-273063 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existence of positive solutions for a coupled system of nonlinear three-point boundary value problems of the type -x[variant prime][variant prime] (t)=f(t,x(t),y(t)) , t∈(0,1) , -y[variant prime][variant prime] (t)=g(t,x(t),y(t)) , t∈(0,1) , x(0)=y(0)=0 , x(1)=αx(η) , y(1)=αy(η) , is established. The nonlinearities f , g:(0,1)×(0,∞)×(0,∞)[arrow right][0,∞) are continuous and may be singular at t=0,t=1,x=0 , and/or y=0 , while the parameters η , α satisfy η∈(0,1),0 |
---|---|
ISSN: | 1687-2762 1687-2770 1687-2770 |
DOI: | 10.1186/1687-2770-2009-273063 |