Development of Shale Gas Prediction Models for Long-Term Production and Economics Based on Early Production Data in Barnett Reservoir

This study examined the relationship between the early production data and the long-term performance of shale gas wells, including the estimated ultimate recovery (EUR) and economics. The investigated early production data are peak gas production rate, 3-, 6-, 12-, 18-, and 24-month cumulative gas p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-01, Vol.13 (2), p.424
Hauptverfasser: Nguyen-Le, Viet, Shin, Hyundon, Little, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examined the relationship between the early production data and the long-term performance of shale gas wells, including the estimated ultimate recovery (EUR) and economics. The investigated early production data are peak gas production rate, 3-, 6-, 12-, 18-, and 24-month cumulative gas production (CGP). Based on production data analysis of 485 reservoir simulation datasets, CGP at 12 months (CGP_12m) was selected as a key input parameter to predict a long-term shale gas well’s performance in terms of the EUR and net present value (NPV) for a given well. The developed prediction models were then validated using the field production data from 164 wells which have more than 10 years of production history in Barnett Shale, USA. The validation results showed strong correlations between the predicted data and field data. This suggests that the proposed models can predict the shale gas production and economics reliably in Barnett shale area. Only a short history of production (one year) can be used to estimate the EUR and NPV of various production periods for a gas well. Moreover, the proposed prediction models are consistently applied for young wells with short production histories and lack of reservoir and hydraulic fracturing data.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13020424