One-Dimensional Compressible Viscous Micropolar Fluid Model: Stabilization of the Solution for the Cauchy Problem

We consider the Cauchy problem for nonstationary 1D flow of a compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. This problem has a unique generalized solution on for each . Supposing that the initial functions are smal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2010-01, Vol.2010 (1), p.796065
1. Verfasser: Mujakovic, Nermina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Cauchy problem for nonstationary 1D flow of a compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. This problem has a unique generalized solution on for each . Supposing that the initial functions are small perturbations of the constants we derive a priori estimates for the solution independent of , which we use in proving of the stabilization of the solution.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1155/2010/796065