One-Dimensional Compressible Viscous Micropolar Fluid Model: Stabilization of the Solution for the Cauchy Problem
We consider the Cauchy problem for nonstationary 1D flow of a compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. This problem has a unique generalized solution on for each . Supposing that the initial functions are smal...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2010-01, Vol.2010 (1), p.796065 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Cauchy problem for nonstationary 1D flow of a compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. This problem has a unique generalized solution on
for each
. Supposing that the initial functions are small perturbations of the constants we derive a priori estimates for the solution independent of
, which we use in proving of the stabilization of the solution. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1155/2010/796065 |