Derivation of a Universally Valid Array Factor of a Conformal Arrays Based on Phase Compensation and Genetic Learning Particle Swarm Optimization
In this study, we investigated the recent deterioration of the radiation pattern performance of conformal arrays, which are applied to fields such as aircraft and vehicles. We analyzed the radiation pattern of conformal arrays in the array factor stage by combining previous studies on various beam-f...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-07, Vol.12 (13), p.6501 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we investigated the recent deterioration of the radiation pattern performance of conformal arrays, which are applied to fields such as aircraft and vehicles. We analyzed the radiation pattern of conformal arrays in the array factor stage by combining previous studies on various beam-forming techniques for conformal arrays. To efficiently calculate and utilize the radiation pattern of conformal arrays, we derived an array factor based on phase composition for nonplanar arrays of three-dimensional (3D) coordinate systems. As an amplitude tapering method for controlling the sidelobe level of the derived 3D array factor, we propose a Bernstein polynomial generalization method based on Genetic Learning Particle Swarm Optimization. The proposed 3D array factor was verified using a cavity-backed patch antenna operating at the X-band through EM simulation of conformal arrays as a single element. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12136501 |