Hydrodynamic Performance of a Catamaran in Shallow Waters

The effects of limited water depth on the hydrodynamic performance of a catamaran with the full-scale dimensions and geometry of a WAM-V 16 unmanned surface vehicle operating in shallow waters are investigated using an incompressible URANS-VOF solver in OpenFOAM®. Simulations of the flow associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2022-09, Vol.10 (9), p.1169
Hauptverfasser: Ulgen, Kayhan, Dhanak, Manhar R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of limited water depth on the hydrodynamic performance of a catamaran with the full-scale dimensions and geometry of a WAM-V 16 unmanned surface vehicle operating in shallow waters are investigated using an incompressible URANS-VOF solver in OpenFOAM®. Simulations of the flow associated with the passage of the catamaran in shallow waters have been conducted for a range of vehicle speed and several shallow to intermediate water depths under free trim and sinkage conditions. The effects of water depth on the resistance and the dynamic motion of the catamaran are characterized. The total resistance coefficient of the catamaran is shown to increase by as much as over 40% at transcritical Froude numbers, close to the critical depth-dependent Froude number (Frh=1.0). The wave system associated with the flow is examined and its relationship to observed impacts on resistance, trim and sinkage are discussed. The effect of limited water depth on Kelvin’s wake angle is characterized in terms of both length and depth Froude numbers and is shown to be in good agreement with theory.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse10091169