Global geological methane emissions: An update of top-down and bottom-up estimates

A wide body of literature suggests that geological gas emissions from Earth’s degassing are a major methane (CH4) source to the atmosphere. These emissions are from gas-oil seeps, mud volcanoes, microseepage and submarine seepage in sedimentary (petroleum-bearing) basins, and geothermal and volcanic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Elementa (Washington, D.C.) D.C.), 2019, Vol.7 (4)
Hauptverfasser: Etiope, Giuseppe, Schwietzke, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A wide body of literature suggests that geological gas emissions from Earth’s degassing are a major methane (CH4) source to the atmosphere. These emissions are from gas-oil seeps, mud volcanoes, microseepage and submarine seepage in sedimentary (petroleum-bearing) basins, and geothermal and volcanic manifestations. Global bottom-up emission estimates, ranging from 30 to 76 Tg CH4 yr–1, evolved in the last twenty years thanks to the increasing number of flux measurements, and improved knowledge of emission factors and area distribution (activity). Based on recent global grid maps and updated evaluations of mud volcano and microseepage emissions, the global geo-CH4 source is now (bottom-up) estimated to be 45 (27–63) Tg yr–1, i.e., ~8% of total CH4 sources. Top-down verifications, based on independent approaches (including ethane and isotopic observations) from different authors, are consistent with the range of the bottom-up estimate. However, a recent top-down study, based on radiocarbon analyses in polar ice cores, suggests that geological, fossil (14C-free) CH4 emissions about 11,600 years ago were much lower (
ISSN:2325-1026
2325-1026
DOI:10.1525/elementa.383