Dynamic Instability Analysis of a Rotating Ship Shaft under a Periodic Axial Force by Discrete Singular Convolution

Dynamic instability of a rotating ship shaft subjected to a periodic axial force is studied by using discrete singular convolution (DSC) with regularized Shannon’s delta kernel. The excitation frequency is related to the spinning speed and the number of blades on the propeller. Effects of number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2015-01, Vol.2015 (2015), p.1-11
Hauptverfasser: Chen, Zhigang, Gao, Xuexia, Song, Zhiwei, Li, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic instability of a rotating ship shaft subjected to a periodic axial force is studied by using discrete singular convolution (DSC) with regularized Shannon’s delta kernel. The excitation frequency is related to the spinning speed and the number of blades on the propeller. Effects of number of blades, constant term in the periodic force, and damping on dynamic instability regions are investigated. The results have shown that the increase of number of blades and damping could improve the dynamic stability of rotating shaft with damping. The increase of constant term in the periodic force leads to dynamic instability regions shifting to lower frequencies, making the shaft more sensitive to periodic force. Those dynamic instability regions obtained by DSC method have been compared with those by Floquet’s method to verify the application of DSC method to dynamic instability analysis of rotating ship shaft.
ISSN:1070-9622
1875-9203
DOI:10.1155/2015/482607