3D quasi-skyrmions in thick cylindrical and dome-shape soft nanodots
Magnetic skyrmions are widely attracting researchers due to fascinating physics and novel applications related to their non-trivial topology. Néel skyrmions have been extensively investigated in magnetic systems with Dzyaloshinskii–Moriya interaction (DMI) and/or perpendicular magnetic anisotropy. H...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-03, Vol.12 (1), p.3426-9, Article 3426 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetic skyrmions are widely attracting researchers due to fascinating physics and novel applications related to their non-trivial topology. Néel skyrmions have been extensively investigated in magnetic systems with Dzyaloshinskii–Moriya interaction (DMI) and/or perpendicular magnetic anisotropy. Here, by means of micromagnetic simulations and analytical calculations, we show that 3D quasi-skyrmions of Néel type, with topological charge close to 1, can exist as metastable states in soft magnetic nanostructures with no DMI, such as in Permalloy thick cylindrical and dome-shaped nanodots. The key factor responsible for the stabilization of DMI-free is the interplay of the exchange and magnetostatic energies in the nanodots. The range of geometrical parameters where the skyrmions are found is wider in magnetic dome-shape nanodots than in their cylindrical counterparts. Our results open the door for a new research line related to the nucleation and stabilization of magnetic skyrmions in a broad class of nanostructured soft magnetic materials. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-07407-w |