Riemann–Finsler geometry and Lorentz-violating scalar fields

The correspondence between Riemann–Finsler geometries and effective field theories with spin-independent Lorentz violation is explored. We obtain the general quadratic action for effective scalar field theories in any spacetime dimension with Lorentz-violating operators of arbitrary mass dimension....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2018-11, Vol.786 (C), p.319-326
Hauptverfasser: Edwards, Benjamin R., Kostelecký, V. Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The correspondence between Riemann–Finsler geometries and effective field theories with spin-independent Lorentz violation is explored. We obtain the general quadratic action for effective scalar field theories in any spacetime dimension with Lorentz-violating operators of arbitrary mass dimension. Classical relativistic point-particle lagrangians are derived that reproduce the momentum-velocity and dispersion relations of quantum wave packets. The correspondence to Finsler structures is established, and some properties of the resulting Riemann–Finsler spaces are investigated. The results provide support for open conjectures about Riemann–Finsler geometries associated with Lorentz-violating field theories.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2018.10.011