Riemann–Finsler geometry and Lorentz-violating scalar fields
The correspondence between Riemann–Finsler geometries and effective field theories with spin-independent Lorentz violation is explored. We obtain the general quadratic action for effective scalar field theories in any spacetime dimension with Lorentz-violating operators of arbitrary mass dimension....
Gespeichert in:
Veröffentlicht in: | Physics letters. B 2018-11, Vol.786 (C), p.319-326 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The correspondence between Riemann–Finsler geometries and effective field theories with spin-independent Lorentz violation is explored. We obtain the general quadratic action for effective scalar field theories in any spacetime dimension with Lorentz-violating operators of arbitrary mass dimension. Classical relativistic point-particle lagrangians are derived that reproduce the momentum-velocity and dispersion relations of quantum wave packets. The correspondence to Finsler structures is established, and some properties of the resulting Riemann–Finsler spaces are investigated. The results provide support for open conjectures about Riemann–Finsler geometries associated with Lorentz-violating field theories. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2018.10.011 |