Computationally Efficient Hybrid Method for the Numerical Solution of the 2D Time Fractional Advection-Diffusion Equation

In this paper, a hybrid method based on the Laplace transform and implicit finite difference scheme is applied to obtain the numerical solution of the two-dimensional time fractional advection-diffusion equation (2D-TFADE). Some of the major limitations in computing the numerical solution for fracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematical, engineering and management sciences engineering and management sciences, 2020-06, Vol.5 (3), p.432-446
Hauptverfasser: Salama, Fouad Mohammad, Ali, Norhashidah Hj. Mohd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a hybrid method based on the Laplace transform and implicit finite difference scheme is applied to obtain the numerical solution of the two-dimensional time fractional advection-diffusion equation (2D-TFADE). Some of the major limitations in computing the numerical solution for fractional differential equations (FDEs) in multi-dimensional space are the huge computational cost and storage requirement, which are O(N^2) cost and O(MN) storage, N and M are the total number of time levels and space grid points, respectively. The proposed method reduced the computational complexity efficiently as it requires only O(N) computational cost and O(M) storage with reasonable accuracy when numerically solving the TFADE. The method’s stability and convergence are also investigated. The Results of numerical experiments of the proposed method are obtained and found to compare well with the results of existing standard finite difference scheme.
ISSN:2455-7749
2455-7749
DOI:10.33889/IJMEMS.2020.5.3.036