Multi-Phase Stator Current Tracking with Gradual Penalization of Commutations

Energy efficiency in drives is an important issue. In converter-supplied variable-speed drives, switching losses can amount to a significant portion of all losses. This has been considered in Predictive Stator Current Control (PSCC), considering commutations at the power converter. However, in multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-07, Vol.14 (14), p.6005
Hauptverfasser: Arahal, Manuel R., Satué, Manuel G., Martínez-Heredia, Juana M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy efficiency in drives is an important issue. In converter-supplied variable-speed drives, switching losses can amount to a significant portion of all losses. This has been considered in Predictive Stator Current Control (PSCC), considering commutations at the power converter. However, in multi-phase drives, the computational burden limits the application of said techniques. Recent fast predictive algorithms have enabled shorter application times with enhanced tracking results. However, the switching frequency becomes larger with diminishing sampling periods. This paper presents a method that retains the fast computation of recent methods while reducing the switching frequency. The proposal revolves around a modification of the cost function to penalize commutations in a nonlinear way. For this task, a novel, gradual penalization is introduced. The method is experimentally applied to a five-phase induction motor. Experimental results show a significant reduction in switching frequency without compromising other control objectives. This results in an enhanced PSCC with a small sampling period and reduced switching losses.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14146005