A Note on the McCormick Second-Order Constraint Qualification
The study of optimality conditions and constraint qualification is a key topic in nonlinear optimization. In this work, we present a reformulation of the well-known second-order constraint qualification described by McCormick in [17]. This reformulation is based on the use of feasible arcs, but is i...
Gespeichert in:
Veröffentlicht in: | Trends in Computational and Applied Mathematics 2022-12, Vol.23 (4), p.769-781 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of optimality conditions and constraint qualification is a key topic in nonlinear optimization. In this work, we present a reformulation of the well-known second-order constraint qualification described by McCormick in [17]. This reformulation is based on the use of feasible arcs, but is independent of Lagrange multipliers. Using such a reformulation, we can show that a local minimizer verifies the strong second-order necessary optimality condition. We can also prove that the reformulation is weaker than the known relaxed constant rank constraint qualification in [19]. Furthermore, we demonstrate that the condition is neither related to the MFCQ+WCR in [8] nor to the CCP2 condition, the companion constraint qualification associated with the second-order sequential optimality condition AKKT2 in [5]. |
---|---|
ISSN: | 2676-0029 2676-0029 |
DOI: | 10.5540/tcam.2022.023.04.00769 |