Error bounds of a function related to generalized Lipschitz class via the pseudo-Chebyshev wavelet and its applications in the approximation of functions

In this paper, a new computation method derived to solve the problems of approximation theory. This method is based upon pseudo-Chebyshev wavelet approximations. The pseudo-Chebyshev wavelet is being presented for the first time. The pseudo-Chebyshev wavelet is constructed by the pseudo-Chebyshev fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Karpats'kì matematinì publìkacìï 2022-04, Vol.14 (1), p.29-48
Hauptverfasser: Lal, S., Kumar, S., Mishra, S.K., Awasthi, A.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new computation method derived to solve the problems of approximation theory. This method is based upon pseudo-Chebyshev wavelet approximations. The pseudo-Chebyshev wavelet is being presented for the first time. The pseudo-Chebyshev wavelet is constructed by the pseudo-Chebyshev functions. The method is described and after that the error bounds of a function is analyzed. We have illustrated an example to demonstrate the accuracy and efficiency of the pseudo-Chebyshev wavelet approximation method and the main results. Four new error bounds of the function related to generalized Lipschitz class via the pseudo-Chebyshev wavelet are obtained. These estimators are the new fastest and best possible in theory of wavelet analysis.
ISSN:2075-9827
2313-0210
DOI:10.15330/cmp.14.1.29-48