A Novel Image Encryption Algorithm Based on Compressive Sensing and a Two-Dimensional Linear Canonical Transform

In this paper, we propose a secure image encryption method using compressive sensing (CS) and a two-dimensional linear canonical transform (2D LCT). First, the SHA256 of the source image is used to generate encryption security keys. As a result, the suggested technique is able to resist selected pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2024-01, Vol.8 (2), p.92
Hauptverfasser: Li, Yuan-Min, Jiang, Mingjie, Wei, Deyun, Deng, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a secure image encryption method using compressive sensing (CS) and a two-dimensional linear canonical transform (2D LCT). First, the SHA256 of the source image is used to generate encryption security keys. As a result, the suggested technique is able to resist selected plaintext attacks and is highly sensitive to plain images. CS simultaneously encrypts and compresses a plain image. Using a starting value correlated with the sum of the image pixels, the Mersenne Twister (MT) is used to control a measurement matrix in compressive sensing. Then, the scrambled image is permuted by Lorenz’s hyper-chaotic systems and encoded by chaotic and random phase masks in the 2D LCT domain. In this case, chaotic systems increase the output complexity, and the independent parameters of the 2D LCT expand the key space of the suggested technique. Ultimately, diffusion based on addition and modulus operations yields a cipher-text image. Simulations showed that this cryptosystem was able to withstand common attacks and had adequate cryptographic features.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract8020092