Comparison of Fluorescent Microspheres and Colloidal Gold as Labels in Lateral Flow Immunochromatographic Assays for the Detection of T-2 Toxin
A new highly specific and sensitive monoclonal antibody (MAb) to T-2 toxin (T-2) was produced, providing an IC50 value of 1.02 ng/mL and negligible cross-reactivity (CR) to other related mycotoxins. Based on the new MAb, a lateral-flow immunochromatographic assay (LFIA) using colloidal gold (CG) and...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2016-01, Vol.21 (1), p.E27-E27 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new highly specific and sensitive monoclonal antibody (MAb) to T-2 toxin (T-2) was produced, providing an IC50 value of 1.02 ng/mL and negligible cross-reactivity (CR) to other related mycotoxins. Based on the new MAb, a lateral-flow immunochromatographic assay (LFIA) using colloidal gold (CG) and fluorescent microspheres (FMs) as labels was proposed for T-2. Under the optimized conditions, in rapid qualitative assay, the cut-off values of the CG-LFIA were 400 μg/kg in rice and 50 μg/L in fresh milk, and the cut-off values of the FMs-LFIA were 100 μg/kg in both rice and chicken feed. For the quantitative assay with the FMs-LFIA, the limit of detection (LOD) were 0.23 μg/kg and 0.41 μg/kg in rice and chicken feed, respectively, and the average recoveries ranged from 80.2% to 100.8% with the coefficient of variation (CV) below 10.8%. In addition, we found that the CG-LFIA could tolerate the matrix effect of fresh milk better than the FMs-LFIA, while the FMs-LFIA could tolerate the matrix effect of chicken feed better than CG-LFIA under the same experimental conditions. These results provide a certain reference for the selection of appropriate labels to establish a rapid LFIA in various biological samples. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules21010027 |