Consequences of analytic boundary conditions in AdS

A bstract We investigate the effects of an analytic boundary metric for smooth asymptotically anti-de Sitter gravitational solutions. The boundary dynamics is then completely determined by the initial data due to corner conditions that all smooth solutions must obey. We perturb a number of familiar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-04, Vol.2020 (4), p.1-17, Article 45
Hauptverfasser: Horowitz, Gary T., Wang, Diandian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We investigate the effects of an analytic boundary metric for smooth asymptotically anti-de Sitter gravitational solutions. The boundary dynamics is then completely determined by the initial data due to corner conditions that all smooth solutions must obey. We perturb a number of familiar static solutions and explore the boundary dynamics that results. We find evidence for a nonlinear asymptotic instability of the planar black hole in four and six dimensions. In four dimensions we find indications of at least exponential growth, while in six dimensions, it appears that a singularity may form in finite time on the boundary. This instability extends to pure AdS (at least in the Poincare patch). For the class of perturbations we consider, there is no sign of this instability in five dimensions.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP04(2020)045