Cobalt–Nickel Layered Double Hydroxides on Electrospun MXene for Superior Asymmetric Supercapacitor Electrodes

Flexible electrodes for energy storage and conversion require a micro-nanomorphology and stable structure. Herein, MXene fibers (MX-CNF) are fabricated by electrospinning, and Co-MOF nanoarrays are prepared on the fibers to form Co-MOF@MX-CNF. Hydrolysis and etching of Co-MOF@MX-CNF in the Ni2+ solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-12, Vol.8 (51), p.49017-49026
Hauptverfasser: Jiang, Hao, Cheng, Jinbing, He, Junbao, Pu, Chunying, Huang, Xiaoyu, Chen, Yichong, Lu, Xiaohong, Lu, Yang, Zhang, Deyang, Wang, Zhaorui, Leng, Yumin, Chu, Paul K., Luo, Yongsong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexible electrodes for energy storage and conversion require a micro-nanomorphology and stable structure. Herein, MXene fibers (MX-CNF) are fabricated by electrospinning, and Co-MOF nanoarrays are prepared on the fibers to form Co-MOF@MX-CNF. Hydrolysis and etching of Co-MOF@MX-CNF in the Ni2+ solution produce cobalt–nickel layered double hydroxide (CoNi-LDH). The CoNi-LDH nanoarrays on the MX-CNF substrate have a large specific surface area and abundant electrochemical active sites, thus ensuring effective exposure of the CoNi-LDH active materials to the electrolyte and efficient pseudocapacitive energy storage and fast reversible redox kinetics for enhanced charging–discharging characteristics. The CoNi-LDH@MX-CNF electrode exhibits a discharge capacity of 996 F g–1 at a current density of 1 A g–1 as well as 78.62% capacitance retention after 3,000 cycles at 10 A g–1. The asymmetric supercapacitor (ASC) comprising the CoNi-LDH@MX-CNF positive electrode and negative activated carbon electrode shows an energy density of 48.4 Wh kg–1 at a power density of 499 W kg–1 and a capacity retention of 78.9% after 3,000 cycles at a current density of 10 A g–1. Density-functional theory calculations reveal the charge density difference and partial density of states of CoNi-LDH@MX-CNF confirming the large potential of the CoNi-LDH@MX-CNF electrode in energy storage applications.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c06674