Nanoparticle delivery of TFOs is a novel targeted therapy for HER2 amplified breast cancer
The human EGFR2 (HER2) signaling pathway is one of the most actively studied targets in cancer transformation research. Ttriplex-forming oligonucleotides (TFOs) activate DNA damage and induce apoptosis. We aim to encapsulate TFO-HER2 with nano-particle ZW-128 to suppress breast cell growth in vitro...
Gespeichert in:
Veröffentlicht in: | BMC cancer 2023-07, Vol.23 (1), p.680-680, Article 680 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The human EGFR2 (HER2) signaling pathway is one of the most actively studied targets in cancer transformation research. Ttriplex-forming oligonucleotides (TFOs) activate DNA damage and induce apoptosis. We aim to encapsulate TFO-HER2 with nano-particle ZW-128 to suppress breast cell growth in vitro and in vivo.
We designed a set of TFO fragments targeting HER2 and verified their effectiveness. We encapsulated TFO-HER2 in ZW-128 to form nano-drug TFO@ZW-128. Cell counting kit 8, flow cytometry, and western blotting were used to evaluate the effect of TFO@ZW-128 on cell proliferation and the expressions of related proteins. The ant-itumor effect of TFO@ZW-128 was evaluated in vivo using nude mice breast cancer model.
TFO@ZW-128 had efficient cellular uptake in amplified HER2 breast cancer cells. TFO@ZW-128 showed an 80-fold increase in TFO utilization compared with TFO-HER2 in the nude mouse breast cancer model. Meanwhile, TFO@ZW-128 dramatically inhibited the growth of HER2-overexpressing tumors compared with TFO-HER2 (P |
---|---|
ISSN: | 1471-2407 1471-2407 |
DOI: | 10.1186/s12885-023-11176-8 |