High-fidelity four-photon GHZ states on chip

Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2024-05, Vol.10 (1), p.50-7, Article 50
Hauptverfasser: Pont, Mathias, Corrielli, Giacomo, Fyrillas, Andreas, Agresti, Iris, Carvacho, Gonzalo, Maring, Nicolas, Emeriau, Pierre-Emmanuel, Ceccarelli, Francesco, Albiero, Ricardo, Dias Ferreira, Paulo Henrique, Somaschi, Niccolo, Senellart, Jean, Sagnes, Isabelle, Morassi, Martina, Lemaître, Aristide, Senellart, Pascale, Sciarrino, Fabio, Liscidini, Marco, Belabas, Nadia, Osellame, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high fidelity generation of 4-photon Greenberg-Horne-Zeilinger (GHZ) states with a low-loss reconfigurable glass photonic circuit. We reconstruct the density matrix of the generated states using full quantum-state tomography reaching an experimental fidelity to the target state of F GHZ 4 = ( 86.0 ± 0.4 ) % , and a purity of P GHZ 4 = ( 76.3 ± 0.6 ) % . The entanglement of the generated states is certified with a semi device-independent approach through the violation of a Bell-like inequality by more than 39 standard deviations. Finally, we carry out a four-partite quantum secret sharing protocol on-chip where a regulator shares with three interlocutors a sifted key with up to 1978 bits, achieving a qubit-error rate of 10.87%. These results establish that the quantum-dot technology combined with glass photonic circuitry offers a viable path for entanglement generation and distribution.
ISSN:2056-6387
2056-6387
DOI:10.1038/s41534-024-00830-z