ARS: AI-Driven Recovery Controller for Quadruped Robot Using Single-Network Model
Legged robots, especially quadruped robots, are widely used in various environments due to their advantage in overcoming rough terrains. However, falling is inevitable. Therefore, the ability to overcome a falling state is an essential ability for legged robots. In this paper, we propose a method to...
Gespeichert in:
Veröffentlicht in: | Biomimetics (Basel, Switzerland) Switzerland), 2024-12, Vol.9 (12), p.749 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Legged robots, especially quadruped robots, are widely used in various environments due to their advantage in overcoming rough terrains. However, falling is inevitable. Therefore, the ability to overcome a falling state is an essential ability for legged robots. In this paper, we propose a method to fully recover a quadruped robot from a fall using a single-neural network model. The neural network model is trained in two steps in simulations using reinforcement learning, and then directly applied to AiDIN-VIII, a quadruped robot with 12 degrees of freedom. Experimental results using the proposed method show that the robot can successfully recover from a fall within 5 s in various postures, even when the robot is completely turned over. In addition, we can see that the robot successfully recovers from a fall caused by a disturbance. |
---|---|
ISSN: | 2313-7673 2313-7673 |
DOI: | 10.3390/biomimetics9120749 |