Covalent bonded bilayers from germanene and stanene with topological giant capacitance effects

The discovery of twisted bilayer graphene with tunable superconductivity has diverted great focus at the world of twisted van der Waals heterostructures. Here we propose a paradigm for bilayer materials, where covalent bonding replaces the van der Waals interaction between the layers. On the example...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ 2D materials and applications 2023-04, Vol.7 (1), p.27-12, Article 27
Hauptverfasser: Zhang, Binglei, Grassano, Davide, Pulci, Olivia, Liu, Yang, Luo, Yi, Conte, Adriano Mosca, Kusmartsev, Fedor Vasilievich, Kusmartseva, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discovery of twisted bilayer graphene with tunable superconductivity has diverted great focus at the world of twisted van der Waals heterostructures. Here we propose a paradigm for bilayer materials, where covalent bonding replaces the van der Waals interaction between the layers. On the example of germanene-stanene bilayer, we show that such systems demonstrate fascinating topological properties and manifest giant capacitance effects of the order of C  = 10 2 μ F as well as dipole-like charge densities of q  = 1 − 2 × 10 −4 μ C cm −2 , showing promise for 2D ferroelectricity. The observed unique behaviour is closely linked to transverse strain-induced buckling deformations at the bilayer/substrate interface. In alternative GeSn bilayer structures with low twist angles the strain distortions trigger rich topological defect physics. We propose that the GeSn bilayer topology may be switched locally by a substrate-strain-induced electric fields. We demonstrate an approach to fabricate covalent bilayer materials, holding vast possibilities to transform applications technologies across solar, energy and optoelectronic sectors.
ISSN:2397-7132
2397-7132
DOI:10.1038/s41699-023-00381-5