Herbal Extract from Codonopsis pilosula (Franch.) Nannf. Enhances Cardiogenic Differentiation and Improves the Function of Infarcted Rat Hearts
Background: The roots of Codonopsis pilosula (Franch.) Nannf. have been used in traditional Chinese medicine for treating cardiovascular disease. In the current study, we aimed to discover herbal extracts from C. pilosula that are capable of improving cardiac function of infarcted hearts to develop...
Gespeichert in:
Veröffentlicht in: | Life (Basel, Switzerland) Switzerland), 2021-05, Vol.11 (5), p.422, Article 422 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: The roots of Codonopsis pilosula (Franch.) Nannf. have been used in traditional Chinese medicine for treating cardiovascular disease. In the current study, we aimed to discover herbal extracts from C. pilosula that are capable of improving cardiac function of infarcted hearts to develop a potential therapeutic approach. Methods: A mouse embryonic stem (ES) cell-based model with an enhanced green fluorescent protein (eGFP) reporter driven by a cardiomyocyte-specific promoter, the alpha-myosin heavy chain, was constructed to evaluate the cardiogenic activity of herbal extracts. Then, herbal extracts from C. pilosula with cardiogenic activity based on an increase in eGFP expression during ES cell differentiation were further tested in a rat myocardial infarction model with left anterior descending artery (LAD) ligation. Cardiac function assessments were performed using echocardiography, 1, 3, and 6 weeks post LAD ligation. Results: The herbal extract 417W from C. pilosula was capable of enhancing cardiogenic differentiation in mouse ES cells in vitro. Echocardiography results in the LAD-ligated rat model revealed significant improvements in the infarcted hearts at least 6 weeks after 417W treatment that were determined based on left ventricle fractional shortening (FS), fractional area contraction (FAC), and ejection fraction (EF). Conclusions: The herbal extract 417W can enhance the cardiogenic differentiation of ES cells and improve the cardiac function of infarcted hearts. |
---|---|
ISSN: | 2075-1729 2075-1729 |
DOI: | 10.3390/life11050422 |