A 0.2 V, 23 nW CMOS Temperature Sensor for Ultra-Low-Power IoT Applications
We propose a fully on-chip CMOS temperature sensor in which a sub-threshold (sub-VT) proportional-to-absolute-temperature (PTAT) current element starves a current-controlled oscillator (CCO). Sub-VT design enables ultra-low-power operation of this temperature sensor. However, such circuits are highl...
Gespeichert in:
Veröffentlicht in: | Journal of low power electronics and applications 2016-06, Vol.6 (2), p.10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a fully on-chip CMOS temperature sensor in which a sub-threshold (sub-VT) proportional-to-absolute-temperature (PTAT) current element starves a current-controlled oscillator (CCO). Sub-VT design enables ultra-low-power operation of this temperature sensor. However, such circuits are highly sensitive to process variations, thereby causing varying circuit currents from die to die. We propose a bit-weighted current mirror (BWCM) architecture to resist the effect of process-induced variation in the PTAT current. The analog core constituting the PTAT, the CCO, and the BWCM is operational down to 0.2 V supply voltage. A digital block operational at 0.5 V converts the temperature information into a digital code that can be processed and used by other components in a system-on-chip (SoC). The proposed temperature sensor system also supports resolution-power trade-off for Internet-of-things (IoT) applications with different sampling rates and energy needs. The system power consumption is 23 nW and the maximum temperature inaccuracy is +1.5/−1.7 °C from 0 °C to 100 °C with a two-point calibration. The temperature sensor system was designed in a 130 nm CMOS technology and its total area is 250 × 250 μm2. |
---|---|
ISSN: | 2079-9268 2079-9268 |
DOI: | 10.3390/jlpea6020010 |