Sleep/Wakefulness Detection Using Tracheal Sounds and Movements
The current gold standard to detect sleep/wakefulness is based on electroencephalogram, which is inconvenient if included in portable sleep screening devices. Therefore, a challenge in the portable devices is sleeping time estimation. Without sleeping time, sleep parameters such as apnea/hypopnea in...
Gespeichert in:
Veröffentlicht in: | Nature and science of sleep 2020-01, Vol.12, p.1009-1021 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The current gold standard to detect sleep/wakefulness is based on electroencephalogram, which is inconvenient if included in portable sleep screening devices. Therefore, a challenge in the portable devices is sleeping time estimation. Without sleeping time, sleep parameters such as apnea/hypopnea index (AHI), an index for quantifying sleep apnea severity, can be underestimated. Recent studies have used tracheal sounds and movements for sleep screening and calculating AHI without considering sleeping time. In this study, we investigated the detection of sleep/wakefulness states and estimation of sleep parameters using tracheal sounds and movements.
Participants with suspected sleep apnea who were referred for sleep screening were included in this study. Simultaneously with polysomnography, tracheal sounds and movements were recorded with a small wearable device, called the Patch, attached over the trachea. Each 30-second epoch of tracheal data was scored as sleep or wakefulness using an automatic classification algorithm. The performance of the algorithm was compared to the sleep/wakefulness scored blindly based on the polysomnography.
Eighty-eight subjects were included in this study. The accuracy of sleep/wakefulness detection was 82.3±8.66% with a sensitivity of 87.8±10.8 % (sleep), specificity of 71.4±18.5% (awake), F1 of 88.1±9.3% and Cohen's kappa of 0.54. The correlations between the estimated and polysomnography-based measures for total sleep time and sleep efficiency were 0.78 ( |
---|---|
ISSN: | 1179-1608 1179-1608 |
DOI: | 10.2147/NSS.S276107 |