High-Order Finite-Element Framework for the Efficient Simulation of Multifluid Flows
In this paper, we present a comprehensive framework for the simulation of Multifluid flows based on the implicit level-set representation of interfaces and on an efficient solving strategy of the Navier-Stokes equations. The mathematical framework relies on a modular coupling approach between the le...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2018-10, Vol.6 (10), p.203 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a comprehensive framework for the simulation of Multifluid flows based on the implicit level-set representation of interfaces and on an efficient solving strategy of the Navier-Stokes equations. The mathematical framework relies on a modular coupling approach between the level-set advection and the fluid equations. The space discretization is performed with possibly high-order stable finite elements while the time discretization features implicit Backward Differentation Formulae of arbitrary order. This framework has been implemented within the Feel++ library, and features seamless distributed parallelism with fast assembly procedures for the algebraic systems and efficient preconditioning strategies for their resolution. We also present simulation results for a three-dimensional Multifluid benchmark, and highlight the importance of using high-order finite elements for the level-set discretization for problems involving the geometry of the interfaces, such as the curvature or its derivatives. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math6100203 |