In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis

cytotoxic effects of ZnO, FeO and Cu metallic nanopowders (NPs) on Vero (African green monkey kidney cell line), PK 15 (Pig kidney cell line) and Madin Darby Bovine Kidney (MDBK) cell lines were investigated at different time intervals (24 and 48 h). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology reports 2017-01, Vol.4, p.427-430
Hauptverfasser: S, Saranya, K, Vijayaranai, S, Pavithra, N, Raihana, K, Kumanan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:cytotoxic effects of ZnO, FeO and Cu metallic nanopowders (NPs) on Vero (African green monkey kidney cell line), PK 15 (Pig kidney cell line) and Madin Darby Bovine Kidney (MDBK) cell lines were investigated at different time intervals (24 and 48 h). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine the cytotoxic effects of green synthesized (plant based) nanopowders. The comparative effects of exposure period and concentration of nanopowders on cell viability were studied. Green synthesized nanopowders showed varying activity on different type of cells and the effect was generally based on the concentration and exposure time. In MDBK cells, only ZnO nanopowder (NP) showed significant effect on cell viability. The ZnO NP showed improved cell viability at lower concentration (10 μg/100 μl) in all type of cells (Vero, PK 15 and MDBK cells). In contrast, FeO NP showed better activity at the concentration of 10 μg/100 μl, 50 μg/100 μl and 40 μg/100 μl after 24 h exposure time in Vero, PK 15 and MDBK cells respectively. However better cell viability was observed in Cu NP treated Vero, PK 15 and MDBK cells at 40 μg/100 μl, 20 μg/100 μl and 10 μg/100 μl correspondingly. These studies suggested that the activity of green synthesized NPs were highly dependent on concentration, exposure time and type of cells.
ISSN:2214-7500
2214-7500
DOI:10.1016/j.toxrep.2017.07.005