Modeling repulsive forces on fibres via knot energies
Modeling of repulsive forces is essential to the understanding of certain bio-physical processes, especially for the motion of DNA molecules. These kinds of phenomena seem to be driven by some sort of “energy” which especially prevents the molecules from strongly bending and forming self-intersectio...
Gespeichert in:
Veröffentlicht in: | Computational and Mathematical Biophysics 2014-01, Vol.2 (1), p.56-72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modeling of repulsive forces is essential to the understanding of certain bio-physical processes, especially for the motion of DNA molecules. These kinds of phenomena seem to be driven by some sort of “energy” which especially prevents the molecules from strongly bending and forming self-intersections. Inspired by a physical toy model, numerous functionals have been defined during the past twenty-five years that aim at modeling self-avoidance. The general idea is to produce “detangled” curves having particularly large distances between distant strands.
In this survey we present several families of these so-called knot energies. It turns out that they are quite similar from an analytical viewpoint. We focus on proving self-avoidance and existence of minimizers in every knot class. For a suitable subfamily of these energies we show how to prove that these minimizers are even infinitely differentiable |
---|---|
ISSN: | 2544-7297 2299-3266 2544-7297 |
DOI: | 10.2478/mlbmb-2014-0004 |