On recurrent sets of operators
An operator $T$ acting on a Banach space $X$ is said to be recurrent if for each $U$; a nonempty open subset of $X$, there exists $n\in\mathbb{N}$ such that $T^n(U)\cap U\neq\emptyset.$ In the present work, we generalize this notion from a single operator to a set $\Gamma$ of operators. As applicati...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2024-05, Vol.42, p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An operator $T$ acting on a Banach space $X$ is said to be recurrent if for each $U$; a nonempty open subset of $X$, there exists $n\in\mathbb{N}$ such that $T^n(U)\cap U\neq\emptyset.$ In the present work, we generalize this notion from a single operator to a set $\Gamma$ of operators. As application, we study the recurrence of $C$-regularized group of operators. |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.66691 |