Investigation of a Possible Material-Saving Approach of Sputtering Techniques for Radiopharmaceutical Target Production

Magnetron sputtering (MS) is a relatively new deposition technique, which is being considered among the cyclotron solid target (CST) manufacturing options now available, aiming at the medical radioisotopes yield for radiopharmaceutical production. However, the intrinsic high material losses during t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-10, Vol.11 (19), p.9219
Hauptverfasser: Kotliarenko, Alisa, Azzolini, Oscar, Keppel, Giorgio, Pira, Cristian, Esposito, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetron sputtering (MS) is a relatively new deposition technique, which is being considered among the cyclotron solid target (CST) manufacturing options now available, aiming at the medical radioisotopes yield for radiopharmaceutical production. However, the intrinsic high material losses during the deposition process do not permit its use with extremely expensive target materials, such as isotopically enriched metals/oxides. In this study, R&D technology for a new recovering shield is instead proposed to assess the dissipation of target material during the sputtering processes and, thus, an estimate of the material recovery that may be feasible and the related amount. The weight-loss analysis method is used to assess the material losses level inside the chamber during processing. In all tests carried out, a high-purity copper (99.99%) was used as a target material. As a result of this study, the material distribution for both magnetron and diode sputtering depositions can be calculated. The feasibility of the ultra-thick coatings growing, devoted to CST production, is demonstrated.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11199219