Successes and Failures of Static Aptamer-Target 3D Docking Models
While Molecular Dynamics simulation programs are probably superior for predicting the binding and affinity of aptamers and their cognate ligands, such molecular dynamics programs require more computing power and analysis time than static docking programs that are more widely accessible to the scient...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-11, Vol.23 (22), p.14410 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While Molecular Dynamics simulation programs are probably superior for predicting the binding and affinity of aptamers and their cognate ligands, such molecular dynamics programs require more computing power and analysis time than static docking programs that are more widely accessible to the scientific community on the internet. Static docking programs can be used to investigate the geometric fit of rigid DNA or RNA aptamer 3D structures and their ligands to aid in predicting the relative affinities and cross-reactivity of various potential ligands. Herein, the author describes when such static 3D docking analysis has worked well to produce useful predictions or confirmation of high-affinity aptamer interactions or successful aptamer beacon behavior and when it has not worked well. The analysis of why failures may occur with static 3D computer models is also discussed. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms232214410 |